Unlock Your SmartHART Device's Secrets

HIM Smart HART Loop Monitor "Breaks Out" Primary, Second, Third and Fourth Variable Process Data and Instrument Diagnostics from any HART Instrument. Learn more.

2016 General Assembly Planned for Rotterdam, The Netherlands
Event will be attended by leading automation suppliers, end users and other industry participants from around the world. Read more.

Sereiko Presents Vision for Digital Transformation in Abu Dhabi
FieldComm Group’s director of marketing explores the role of the organization’s technologies in supporting the IIoT and Industry 4.0. Read more.

FieldComm Group Technologies Displayed at Honeywell Users Group
2016 HUG event held in San Antonio offered a look at today’s advanced solutions for industrial automation. Read more.

Latest Registered FOUNDATION Fieldbus and HART Products
The number of FOUNDATION Fieldbus and HART products registered by the FieldComm Group continues to grow. Read more.

Leading Automation Foundations Collaborate to Support FDI
FieldComm Group has announced a series of major agreements, contracts, standards and events to accelerate global adoption of Field Device Integration (FDI) technology. Read more.

Kuwait Oil Company Adds Wireless Instruments to 357 Wellheads
Wireless monitoring systems installed at wellheads improve operations, reduce field visits and improve HSE. Read more.

PRODUCTS
New product news you might be interested in:

- CodeWrights Multi-tool Simplifies Device Troubleshooting & Commissioning
- Emerson Introduces Wirelessly-monitored Storage Tank Emergency Vents
- Endress+Hauser Offers Advanced Data Manager with Full HART Support
- Endress+Hauser HART Indicator Gives a Better Overview of the Process
- Honeywell Offers Advanced SmartLine® Level Transmitter
- Moore Industries Provides Smart HART Dual Input Temperature Transmitters

Expand Wireless to Cut Operating Costs

If your process plant is like most, it has some wireless sensors, but could quickly add many more to further improve operations, cut energy use and improve safety. Wireless sensors and networks can now be used to make a very wide range of process measurements, usually at dramatically lower costs as compared to wired alternatives, with much faster installation time and minimal disruption. Learn more.

CALENDAR
Upcoming Events

Americas

Introduction to HART Protocol
Austin, Texas USA
Oct. 3-4, 2016
» More Information

HART Fundamentals Workshop
Introduction to FOUNDATION Fieldbus

Austin, Texas USA
Oct. 3-6, 2016
» More Information

Advanced Principles of FOUNDATION Fieldbus

Austin, Texas USA
Oct. 11, 2016
» More Information

Device Integration - Writing EDD and FDI Package Workshop

Austin, Texas USA
Dec. 5-8, 2016
» More Information

Europe, Middle East, Africa (EMEA)

Introduction to FOUNDATION Fieldbus

Düsseldorf, Germany
Sept. 6, 2016
» More Information

Advanced Principles of FOUNDATION Fieldbus

Düsseldorf, Germany
Sept. 7-9, 2016
» More Information

Device Integration - Writing EDD and FDI Packaging Workshop

Düsseldorf, Germany
» More Information

General Assembly & Writing Group Meeting

Rotterdam, Netherlands
Oct. 17-20, 2016
» More Information

Introduction to HART Protocol

Düsseldorf, Germany
Nov. 7-8, 2016
» More Information

HART Fundamentals Workshop

Düsseldorf, Germany
Nov. 7-10, 2016
» More Information
Asia-Pacific
Measurement & Control Show 2016
Osaka, Japan
Nov. 9-11, 2016

India
Automation Fair 2016
Mumbai, India
Aug. 22-26, 2016
» More Information
2016 General Assembly planned for Rotterdam, the Netherlands

By FieldComm Group
Aug 09, 2016

FieldComm Group will hold its 2016 General Assembly/Working Group Meeting in Rotterdam, The Netherlands, on Oct. 17-21. This annual event is open to both members and non-members, and will be attended by leading automation suppliers, end users and other industry participants from around the world.

The General Assembly, held on Oct. 17, is an end-user oriented event with presentations covering the full spectrum of FieldComm Group activities across the globe. They will include updates from leading technical experts, both from FieldComm Group and major systems suppliers, on the latest advancements in HART, FOUNDATION™ Fieldbus and FDI. In addition, major end users who have installed these technologies in their industrial operations will be presenting and attending. For information on attending this event, please visit http://go.fieldcommgroup.org.

The Working Group meetings, held Oct. 18-21, are members-only events aimed at enhancing and improving the technical specifications and marketing initiatives for the various technologies. Members are encouraged to attend and be a part of the strong teamwork improving collaboration and adoption worldwide.

“FieldComm Group technologies are enabling efficiency in the delivery of the world’s energy resources, so it only makes sense that our 2016 General Assembly would be held in Rotterdam, The Netherlands — one of the key centers of the global oil & gas and petrochemical industries,” said Ted Masters, FieldComm Group president and CEO. “Our annual meeting will attract a wide spectrum of the automation community throughout the region. We strongly encourage all end users of our technologies, and those looking to become users, to actively participate in this event.”

For more information, please visit the FieldComm Group website.
Paul Sereiko, FieldComm Group’s Director of Marketing, described the role of his organization’s technologies in supporting the Industrial Internet of Things (IIoT) and Industry 4.0 at a meeting of The International Society of Automation (ISA) held June 22 in Abu Dhabi, United Arab Emirates.

Around the world, industrial organizations are dealing with the evolution of their businesses and operations, where the virtual world of information technology (IT), the physical world of machines and the Internet have become one. Developments like the IIoT and Industry 4.0 promise to have the greatest impact on industrial automation since the introduction of microprocessor-based distributed control systems.

Communication protocols and standards form the backbone of the Industrial Internet in that they enable the secure integration and interoperability of the many devices and software applications that participate in the “system of systems” that is the IIoT.

Sereiko told the ISA audience, “Digital transformation is fundamental to implementation of the IIoT, enabling data-driven decisions that improve industrial operations. It starts with recognition that in-place analog solutions are
sub-optimal, coupled with the belief that networking and software technologies underpinning the Internet have a place in process automation. Finally, there is the act of leveraging global manufacturing technology initiatives by deploying disruptive new technologies to improve safety and performance."

As part of his presentation, Sereiko described how FieldComm Group technologies support the move to smarter plant operations made possible by the IIoT. Industrial organizations can connect to valuable information in intelligent field devices – regardless of protocol – by using Field Device Integration (FDI) to integrate the information in a control system, asset management application or ERP system; then visualize and evaluate the data; and ultimately take action based on the information to prevent shutdowns, lower operating costs, reduce maintenance expenses, and become more predictive in how plants are run.

He concluded, “We should remember that technology can augment but not replace an invested and capable workforce.”

For more information, please visit the FieldComm Group website.
FieldComm Group technologies displayed at Honeywell Users Group

By FieldComm Group
Aug 09, 2016

The 2016 Honeywell Users Group (HUG), held June 19-24 at the JW Marriott Resort and Spa in San Antonio, Texas, offered a look at today’s advanced solutions for industrial automation. Attendees at the symposium had an opportunity to network with their peers, share best practices, exchange ideas, discover new technologies, and discuss project implementations and applications.

FieldComm Group displayed HART®, FOUNDATION™ Fieldbus, and Field Device Integration (FDI) technologies at this year’s event, showing how they enable a connected framework using intelligent field devices to reduce waste, improve safety and increase operational efficiency.

FieldComm Group Marketing & Business Development Manager, Talon Petty, commented, “HUG 2016 proved to be an excellent venue to present our theme of “CONNECT+INTEGRATE=VALUE” and explain how we play a key role in emerging developments such as the IIoT and Industry 4.0. We were pleased to demonstrate how FieldComm Group technologies help systems and software convert data into actionable intelligence and capture value through improved operations.”

The annual HUG gathering provides useful information and opportunities for professional interaction related to automation topics such as control system migration, cyber security, alarm management, and more. Hundreds of industry stakeholders attend the event and offer their insights on how to improve plant performance, production efficiency, human and environmental safety, and regulatory compliance.

For more information, please visit the FieldComm Group website.
The number of FOUNDATION Fieldbus and HART products registered by the FieldComm Group continues to grow. FieldComm Group is one of the only automation industry organizations with a registration program requiring mandatory testing of critical elements of its technologies. The effort encompasses host systems and field devices and physical layer components such as power supplies and device couplers from all segments of the automation market.

The table lists the most recently registered products by manufacturer, type, and model/host name.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Manufacturer</th>
<th>Type</th>
<th>Model / Device Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>HART</td>
<td>ABB Automation GmbH</td>
<td>level meter</td>
<td>LLT100</td>
</tr>
<tr>
<td>HART</td>
<td>ABB Automation GmbH</td>
<td>level meter</td>
<td>LMT</td>
</tr>
<tr>
<td>HART</td>
<td>BD SENSORS GmbH</td>
<td>Submersible probe</td>
<td>LMK387H</td>
</tr>
</tbody>
</table>

New Registered Devices
<table>
<thead>
<tr>
<th>FOUNDATION Fieldbus</th>
<th>Belden</th>
<th>Fire Resistant and Circuit Integrity Type A Foundation Fieldbus H1 Cable with ABS Type Approval</th>
<th>50076XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>HART</td>
<td>Dandong Top Electronics Instrument (Group) Co., Ltd.</td>
<td>level meter</td>
<td>DTU100</td>
</tr>
<tr>
<td>FOUNDATION Fieldbus</td>
<td>Dräger Safety</td>
<td>Gas Detector</td>
<td>Polytron 8000</td>
</tr>
<tr>
<td>HART</td>
<td>Draeger Safety AG & Co. KGaA</td>
<td>gas detector</td>
<td>Polytron 8000</td>
</tr>
<tr>
<td>HART</td>
<td>Endress+Hauser GmbH+Co. KG</td>
<td>level transmitter</td>
<td>Micropilot FMR20</td>
</tr>
<tr>
<td>HART</td>
<td>Endress+Hauser Process Solutions</td>
<td>Flow meter</td>
<td>Promass 300/500</td>
</tr>
<tr>
<td>HART</td>
<td>Endress+Hauser Process Solutions</td>
<td>flow meter</td>
<td>Promag 300/500</td>
</tr>
<tr>
<td>HART</td>
<td>Euromag International</td>
<td>Flow meter</td>
<td>MC608</td>
</tr>
<tr>
<td>HART</td>
<td>Fluidwell bv</td>
<td>flow display</td>
<td>E018p</td>
</tr>
<tr>
<td>HART</td>
<td>GE-Masoneilan</td>
<td>valve positioner</td>
<td>SVII AP / H7</td>
</tr>
<tr>
<td>HART</td>
<td>Hawk Measurement Systems P/L</td>
<td>Level Transmitter</td>
<td>Centurion Guided Radar</td>
</tr>
<tr>
<td>HART</td>
<td>HORIBA Advanced Techno, Co., Ltd.</td>
<td>Water Quality Meter</td>
<td>HQ-300</td>
</tr>
<tr>
<td>FOUNDATION</td>
<td>KROHNE</td>
<td>Pressure Transmitter</td>
<td>OPTIBAR 5060</td>
</tr>
<tr>
<td>HART</td>
<td>Microcyber Corporation</td>
<td>pressure transmitter</td>
<td>NCS-PT105 II</td>
</tr>
<tr>
<td>HART</td>
<td>MSA(China) Safety Equipment Co., Ltd</td>
<td>gas detector</td>
<td>DF-8500 H</td>
</tr>
<tr>
<td>HART</td>
<td>Rosemount Inc</td>
<td>Pulse Totalizer</td>
<td>705 Wireless Totalizing Transmitter</td>
</tr>
<tr>
<td>HART</td>
<td>Siemens AG</td>
<td>level meter</td>
<td>SITRANS LG2x0 (SIL)</td>
</tr>
<tr>
<td>HART</td>
<td>Texas Instruments Inc.</td>
<td>Resistance temperature detector</td>
<td>TIDM-HRTTRANSMITTER</td>
</tr>
<tr>
<td>Protocol</td>
<td>Manufacturer</td>
<td>Type</td>
<td>Model / Device Name</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>----------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>HART</td>
<td>Daniel Measurement and Control Inc.</td>
<td>Ultrasonic Gas Flow Meter</td>
<td>3410 Series Gas USM</td>
</tr>
<tr>
<td>HART</td>
<td>Daniel Measurement and Control Inc.</td>
<td>Ultrasonic Gas Flow Meter</td>
<td>3810 Series Liquid USM</td>
</tr>
<tr>
<td>FOUNDATION Fieldbus</td>
<td>Endress + Hauser</td>
<td>8 Channel Fieldbus Indicator</td>
<td>RID14, RID16</td>
</tr>
<tr>
<td>HART</td>
<td>Honeywell International Inc</td>
<td>temperature transmitter</td>
<td>STT750</td>
</tr>
<tr>
<td>HART</td>
<td>Siemens AG</td>
<td>level meter</td>
<td>SITRANS LG2x0 series</td>
</tr>
<tr>
<td>HART</td>
<td>VEGA-Grieshaber KG</td>
<td>level transmitter</td>
<td>VEGAPULS 69</td>
</tr>
<tr>
<td>FOUNDATION Fieldbus</td>
<td>Yokogawa Electric Corporation</td>
<td>Temperature Transmitter</td>
<td>YTA710</td>
</tr>
</tbody>
</table>

Updated Electronic Device Description (EDD)

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Manufacturer</th>
<th>Type</th>
<th>Model / Device Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUNDATION Fieldbus</td>
<td>Endress + Hauser</td>
<td>Pressure Transmitter</td>
<td>Cerabarm M 5x</td>
</tr>
<tr>
<td>FOUNDATION Fieldbus</td>
<td>Endress + Hauser</td>
<td>Differential Pressure Transmitter</td>
<td>Deltabar M 5x</td>
</tr>
<tr>
<td>FOUNDATION Fieldbus</td>
<td>Endress + Hauser</td>
<td>Hydrostatic Level Transmitter</td>
<td>Deltapilot M 5x</td>
</tr>
<tr>
<td>FOUNDATION Fieldbus</td>
<td>Endress + Hauser</td>
<td>2 Channel Temperature Transmitter Head Housing</td>
<td>TMT85</td>
</tr>
<tr>
<td>FOUNDATION Fieldbus</td>
<td>Endress + Hauser</td>
<td>Temperature Head Transmitter</td>
<td>TMT162</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>FOUNDATION Fieldbus</td>
<td>Metso Flow Control</td>
<td>Intelligent Safety Solenoid with PST</td>
<td>VG9000F</td>
</tr>
</tbody>
</table>
Leading automation foundations collaborate to support FDI

By FieldComm Group
Aug 09, 2016

FieldComm Group has announced a series of major agreements, contracts, standards and events to accelerate global adoption of Field Device Integration (FDI) technology. These activities align with its mission to drive adoption of FDI technology to become the global standard for field device integration, independent of underlying device protocols. Included in the announcement are:

- Completion of a contract between co-owners FieldComm Group and the PROFIBUS & PROFINET International organization to manage the IP rights, roadmap and distribution of FDI technology, tools and host components.
- Completion of a contract between FDI technology partners FieldComm Group, PROFIBUS & PROFINET International, the OPC Foundation and the FDT Group to govern the process of FDI specification enhancement and leverage FieldComm Group’s Integration Working Group as the venue of collaboration for all FDI partners.
- Completion of a Memorandum of Understanding between the ISA100 Wireless Compliance Institute (WCI) and FieldComm Group that enables WCI representatives to engage in technology discussions in the Integration Working Group to incorporate ISA100 Wireless support into FDI technology.
- Approval of the FDI technology standard in Plenary SC65E / “Device and Integration in enterprise systems” by the American National Standards Institute (ANSI), and

“This ground-breaking body of work enables the immediate adoption of FDI technology by the automation industry,” said Ted Masters, president and CEO of FieldComm Group. “We are excited with the response this technology has received by leading automation instrumentation and host system providers. All of the major host system suppliers and instrument vendors representing nearly 80% of worldwide field instrument supply have licensed technology development kits for FDI. This activity and support provides confidence to end users that FDI technology will be supported worldwide.”

Endorsement of FDI technology by NAMUR, an international user association of automation technology in process industries, in their WG 2.6 Fieldbus Position Paper “Requirements on an Ethernet Communication System for the Process Industry”.

Karsten Schneider, chairman of PROFIBUS & PROFINET International confirmed the importance of communications – not just in bits and bytes, but person-to-person and organization-to-organization: "The FDI project is a prime example of how users, manufacturers, and user organizations can trustfully and successfully communicate and cooperate,” she said. "FDI will significantly simplify the integration task in process industries. And this cooperation will become even more relevant in the context of Industry 4.0."
FieldComm Group, as the prime standards development organization for FDI technology, is planning to educate the market on FDI technology for the remainder of 2016 including:

- FDI User and Supplier Webinars
- FDI Training Workshops for Developers
- FCG End User Group and General Assembly to host a live demonstration of FDI technology including workshops and “Ask the Experts” session
- New FDI web pages on the new FCG website – www.fieldcommgroup.org

For more information, please visit the FieldComm Group website.
Kuwait Oil Company (KOC) needed to add remote monitoring systems on 357 wellheads to improve upon existing data gathering procedures. These procedures required frequent trips to each wellhead to record data, and manual data entry to get this information into production optimization systems.

At KOC, remote monitoring of wellheads is called real-time surveillance, and they expect it to provide four main benefits:

- Enable faster and lower-cost first production
- Reduce operating, maintenance and compliance costs
- Sustain optimal production and maximize yield
- Ensure health, safety and environmental (HSE) compliance

To realize these benefits, KOC first needed to build a foundation for analysis and optimization, which requires access to the real-time data needed to improve day-to-day asset management. This required installing instrumentation at each wellhead, and then exploiting the breadth of available technologies to monitor process variables in real-time.

Wired and wireless solutions were both considered, with wireless instruments selected due to lower costs, faster implementation, and reduced HSE risks.

Initial Implementation of Real-Time Surveillance

![Figure 1](https://example.com/figure1.png)

Figure 1. This lift station is similar to many others used by KOC. A wireless transmitter measures wellhead pressure, and a second wireless transmitter measures wellhead temperature. Readings from these and other devices are transmitted to and shown in the main control room.
For the first few decades of oil production, KOC relied on the pressure in underground formations to extract oil. But by late 2010, KOC started depending on artificial lift stations to produce the required pressure, with the number of lift units increasing dramatically each year thereafter to the present total of 357 (Figure 1).

Manual operation and monitoring of such a high number of wells began to be very tedious and time-consuming, and it presented hazards to field personnel. Optimizing production was almost impossible due to insufficient instrumentation at many sites and lags in data collection and subsequent data entry. Both of these delayed real-time surveillance.

Real-time automation was first introduced as a solution in early 2012. KOC started with a few wells, and used the information from these wells in very basic optimization applications to demonstrate value. A typical wellhead with a lift station was equipped with the following instrumentation, data gathering and control components:

- Wellhead/Flowline/Casing pressure and temperature (Figure 2)
- HS and CH gas detection
- RTU/PLC for local monitoring and control
- Remote shutdown
- Interface to downhole gauges
- Tank level measurement

Figure 2. A wireless gateway and an RTU panel collect data from pressure, temperature, H S and CH transmitters. The RTU also interfaces with the pump controller and the downhole gauge.

Although these measurements provided tremendous value, early implementations indicated the average time needed to install the necessary wired instrumentation was one to two weeks per well, much too long given the hundreds of wells requiring upgrades. They were also operational constraints and costs, and HSE risks.

- Standardization, improvement and integration of systems and work practices to improve capital efficiency, lower project cost and meet challenging deadlines

- Measurement devices designed to work together with simple means of integration, and possessing diagnostic capability to enable data validation and analysis.

KOC decided to adapt wireless technologies and preconfigured software because they felt it would increase standardization and facilitate getting production online faster. WirelessHART instruments and related components from Emerson Process Management were selected because of KOC’s prior positive experience with other Emerson products and services, and because of the investments Emerson made to work as a partner on projects.
All the instruments at each wellhead are connected to an Emerson wireless gateway, and the gateway is connected back to the central control and monitoring room via Wi-Fi and WiMAX networks. An Emerson RTU is installed at each site to provide the required local monitoring and control, and this unit is also networked back to the central control room via the gateway.

Benefits of Wireless Monitoring

With wireless technology, instrument installation requires no signal wiring, and only some of the wireless instruments require power wiring. Each wireless instrument is connected back to the gateway through the WirelessHART mesh network. This is in contrast to a traditional wired installation, where each instrument requires power wiring, and signal wiring must be run from each instrument to an RTU gateway.

By eliminating most of the required wiring and corresponding infrastructure, installation time was reduced from one week per wellhead to two wells per day, a tenfold improvement. Installations costs were cut in half, saving $3,000 USD per well. HSE risks were also reduced, as much less excavation and wiring work is required in these potentially hazardous areas. Data accuracy is in the range of 99.9%, more than sufficient for the application, and data availability is also high.

The existing SCADA system has been expanded to accommodate all of the new wireless points of measurement. SCADA data management software tools provide easy visualization, trending and analysis—turning raw data from wireless instruments into actionable information—which KOC uses to improve production planning. Now that the surveillance foundation is in place, consideration is being given to utilizing diagnostic tools to confirm instrument health and data validation.

One benefit quickly realized is a reduction in troubleshooting time as technicians have remote access to a wealth of information regarding the operation of each well. This allows them to diagnose problems quickly, and to arrive at the site with all the tools needed to address any issues.

With the expansion in artificial lift units and corresponding instrumentation, the variety and real-time availability of data is dramatically increasing in quantity and complexity. Finding the expertise to filter and interpret data in a timely manner is a challenge, but one well worth the effort as it promises to deliver even more benefits through optimization of wellhead operation, and ultimately the entire oil production system. Optimization will allow KOC to fine tune well production, and maintain oil reservoir recovery to meet production targets.

Conclusion

Enhancing oil production by installing a monitoring system has many challenges, including start-up delays, excavation, costs and HSE risks. Wireless instrumentation allowed KOC to meet these challenges and implement an automation strategy based on real-time surveillance, analysis and optimization. This achievement has lowered operating and maintenance costs, improved HSE performance, and increased production.

A wireless mesh network infrastructure is now in place at each wellhead, making installation of additional

Reprinted from Oilfield Technology, July 2016
Is there a multi-tool for field device troubleshooting and commissioning?

Looking for an easy solution to configure HART devices in the lab and for quick diagnosis in the field?
Tired of visiting several websites to download different software products before being able to start?

With CodeWrights PACTware Bundle for HART, those challenges are a thing of the past.

The all-new HART CommDTM (FDT2) can be used with almost every HART communication modem for connection to your HART devices. iDTM-FDI provides FDI support today. Simply add the FDI Device Package of your preferred HART device and start configuration and troubleshooting immediately.

Do you need an FDT Frame Application supporting the latest FDT2 standard? Use the latest PACTware, provided with the bundle

An advanced HART multi-tool, the CodeWrights PACTware Bundle is the complete FDT solution package for device management:

- Free-of-charge* solution with fully functional, interoperable CodeWrights products + PACTware
- FDT2, FDT1.2 support through PACTware
- FDI compatibility via iDTM-FDI the FDI adapter for PACTware and any FDT frame application
- HART connectivity through the “simply connect to all” HART CommDTM (FDT2)

* Some features and license options may only be available at additional cost

For more information, visit the CodeWrights website.
Emerson introduces wirelessly-monitored storage tank emergency vents

By FieldComm Group
Aug 09, 2016

Emerson has introduced wirelessly-monitored Enardo 2000 emergency pressure relief vents (EPRVs) that provide safety control by managing abnormally high storage tank pressures in the oil and gas, chemical, petrochemical and pharmaceutical industries.

Under normal operating conditions, an EPRV remains closed. The immediate knowledge of an open position can be vital and should warrant quick investigation. However, because these EPRVs are located on top of storage tanks, they are difficult to monitor. Site managers are increasingly looking for ways to increase safety and efficiencies.

The new product design consists of a proximity indicator and wireless transmitter integrated with an EPRV. The proximity indicator senses movement of the emergency vent. “Open” or “closed” signals are received by the wireless transmitter and can be sent to a control room via a WirelessHART® gateway.

“Though EPRVs represent the last line of defense against tank overpressure, they have largely remained unmonitored,” said Steve Attrri, product manager for Emerson Process Management. “Along with the recent introduction of wirelessly-monitored pressure vacuum relief vents (PVRVs), more information is now available to quickly identify and resolve pressure issues that can impact safety and emissions.”

For more information, please visit the Emerson Process Management website.
Endress+Hauser offers advanced data manager with full HART support

By FieldComm Group
Aug 09, 2016

Endress+Hauser's Memograph M RSG45 is a flexible and powerful device for organizing process values. When used together with one of several software packages, it becomes a very economical solution for managing batch, energy, wastewater and other applications. Tamper-proof data storage and personalized user administration with electronic signature (FDA 21 CFR 11) ensure a high degree of security. A range of communication protocols (e.g., PROFINET, EtherNet/IP, etc.) allow measured and calculated values to be easily transported to higher level systems.

In addition to 20 universal analog and 12 discrete inputs, Memograph M RSG45 also has 20 HART inputs. These log both 4-20 mA and HART signals (i.e., the additional process and status information available in all HART devices is easily accessed and displayed). The device has 12 relays, two analog outputs and a transmitter power supply. It can be panel-, desktop or field-mounted and delivered with Ex certification.

Memograph M RSG45 also acts as a HART gateway, allowing direct access to connected HART devices via e.g. FieldCare configuration software. This allows quick and easy device central parameterization. Detailed instrument health status information helps simplify maintenance and troubleshooting, resulting in better process control and increased process safety.

For more information, please visit the Endress+Hauser website.
Endress+Hauser HART Indicator gives a better overview of the process

By FieldComm Group
Aug 09, 2016

If you are looking for a simple and economical means of getting a better, more accurate insight into your process or simply a display for a difficult-to-access device, the RIA15 indicator is all you require. This compact device, suitable for panel (IP65) or field (IP66) mounting, can be connected to any HART device. In addition to the primary value, you now have access to up to three other process values as well as status information.

Both panel and field versions have German Lloyd marine approvals and offer optional international Ex certification. The RIA15 indicator can be used in safety instrumented systems (SIL) as freedom of interference on the safety circuit is guaranteed.

The indicator features an easily read, five-digit display with 17 mm (0.67") high characters, units of measure and bargraph. It is configured by three keys and a backlight can be activated when required. Loop-powered, it requires maximum 1.9 V with an additional 2.9 V when the backlight is on. Configurable as either primary or secondary master, the RIA15 provides an inexpensive monitoring solution as no additional system components are required in the loop.

For more information, please visit the Endress+Hauser website.
Honeywell offers advanced SmartLine Level Transmitter

By FieldComm Group
Aug 09, 2016

Honeywell’s SmartLine Level Transmitter sets a new standard for total performance and user experience, delivering superior value across the plant lifecycle. Integrated with Honeywell’s Experion control system, it offers unique advantages such as enhanced diagnostics, maintenance status display, and transmitter messaging.

The SmartLine Level Transmitter comes with extended pressure and temperature ranges to handle diverse applications in chemicals, refining, oil & gas, and other demanding industries. It is available with a full set of process connections. The key specifications are:

- Pressure range: -1 to 400 bar (-14 to 5801 psi)
- Temperature range: -60 to 450 C (-76 to 842 F)
- Wetted materials for corrosive environments: Alloy C-276 and SS316
- Full set of hazardous area certifications and SIL2/3 rating

The SmartLine Level Transmitter features an online application validation tool to assist with instrument selection; a modular design making it easy to replace or upgrade hardware in the field, even under power; rich advanced display and local configuration capabilities; and standard configuration software and DTM s for easy programming via HART or FOUNDATION Fieldbus. The transmitter’s new functionality of detecting a full and empty tank, even at instrument startup, improves reliability of level control and is unique in the industry.

For more information, please visit the Honeywell website.
Moore Industries provides Smart HART dual input temperature transmitters

By FieldComm Group
Aug 09, 2016

The THZ3 and TDZ3 mark the next generation of Smart HART temperature transmitters from Moore Industries. They feature industry-leading durability and reliability combined with new features that increase usability and functionality including a new dual sensor input.

These transmitters provide an isolated and linear 4-20 mA output proportional to input and configure easily to accept a direct signal input from a wide array of sensors and analog devices. Users can build custom curves with up to 128 points for non-standard or special inputs.

Dual Input: Dual sensor input means that you get backup and fail-over protection because the transmitters allow either of the sensors or inputs to be designated as the primary measurement, with the secondary input acting as a backup sensor in case of primary sensor failure. Unlike other dual-input transmitters, the THZ3 and TDZ3 offer auto-recovery after a fail-over event by automatically re-designating the new sensor as the PV without operator intervention. Additional dual input features include:

• Average and Differential measurement
• High-Select and Low-Select
• Dynamic Variable Mapping

Advanced Control and Monitoring: The THZ3 and TDZ3 come with Device Intelligence, a series of features for smarter control and monitoring including sensor drift, corrosion detection, smart range alarms and a high availability option.

For more information, please visit the Moore Industries website.